

On the C++1 Object Programming for Time Series,

in the Linux2 framework
George Daniel Mateescu3

Abstract. We study the implementation of time series trough C++ classes, using the

fundamentals of C++ programming language, in the Linux framework. Such an

implementation may be useful in time series modeling.

JEL Classification: C32

AMS Classification: 68N30

Key words: Object Programming, Time Series

Introduction

The C++ programming is widely used in various fields. For time series, or data series,

there exists a close structure, namely “strings”. Our goal is to explain and implement objects,

by using only open source software, such as Linux – Centos operating system.

First of all, let us assume that C++ environment is installed and up-to-date:
yum clean all

yum install gcc

yum install gcc-c++

Second, we have to use a text file editor, such as vi.

By using the editor, let us remember the C++ definition of an object class
class TS{

public:

float * s;

int n;

};

1 C++ language was created by Bjarne Stroustrup
2 Linux operating system was created by Linus Benedict Torvalds
3 e-mail: daniel@mateescu.ro

 1

In Linux – Centos we will create a file, by using vi editor, vi definition.cpp

class TS{

public:

float * s;

int n;

};

int main(){

TS T;

return 1;

}

The above definition is the minimum definition of a C++ class, which stands for a

time series. Indeed, the integer n is designated to count the number of the values, while the

float pointer s will describe the values of the string.

Our class will need a constructor, in order to allocate a space for the object. Such a

constructor may be:
TS::TS(int m){

n=m;

s=(float *)malloc(m);

};

By using the above constructor, the TS definition of an object will be:
TS T(10)

which means a time series, T, with 10 values.

For modeling reasons, it may be useful to initialize the values, as for example, a

sequence of natural numbers. As consequence, we will declare a second constructor:
TS::TS(int m,int p){

n=m;

s=(float *)malloc(m);

for(int i=0;i<m;i++)s[i]=p++;

};

Then, the definition:
TS I(5,1)

means a time series, I, of values: 1, 2, 3, 4, 5.

Class Functions

Some characteristic values may be considered as function members. We will use

functions mean and dev for mean values and standard deviation of a time series, i.e.:
class TS{

public:

float * s;

 2

int n;

float mean();

float dev();

TS(int);

TS(int,int);

};

The member function mean will be:
float TS:: mean(){

float m=0;

for(int i=0;i<n;i++)m+=s[i];

return m/n;

};

and dev (standard deviation):
float TS:: dev(){

float d=0;

for(int i=0;i<n;i++)d+=(s[i]-mean())*(s[i]-mean());

return sqrt(d/n);

};

The maximum value and the minimum value may be also implemented as member

functions:
float TS::min(){

float m=s[0];

for(int i=1;i<n;i++)m>s[i]?m=s[i]:m;

return m;

};

float TS::max(){

float m=s[0];

for(int i=1;i<n;i++)m<s[i]?m=s[i]:m;

return m;

};

Operators

The most frequently used operation with time series is the regression, i.e. the

determination of the linear function

ϕ(x)=ax+b

which satisfies:

()∑
n

2

i ia,b
i=1

inf y -ax -b

 3

X(xi) and Y(yi) being two time series, of n values.

As it is known, parameters a and b are:

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑ ∑

n n n

i i i i
i=1 i=1 i=1

2n n
2
i i

i=1 i=1

n x y - x y

a =

n x - x

⎠ and

2

1

n

i i
i

y
=

⎛ ⎞⎛
⎜ ⎟⎜
⎝ ⎠⎝

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑

n n n

i i
i=1 i=1 i=1

2n n
2
i i

i=1 i=1

x - x x y

b =

n x - x

⎞
⎟
⎠

i

In our C++ model, we will define the class regress, designated to describe the

regression parameters.
class regress{

public:

float slope;

float intercept;

};

The regression is implemented by overloading operator >
regress operator > (TS y,TS x){

regress r;

float sx=0,sy=0,sx2=0,sxy=0;

for(int i=0;i<x.n;i++){

sx+=x.s[i];

sy+=y.s[i];

sx2+=x.s[i]*x.s[i];

sxy+=x.s[i]*y.s[i];

};

r.slope=(x.n*sxy-sx*sy)/(x.n*sx2-sx*sx);

r.intercept=(sx2*sy-sx*sxy)/(x.n*sx2-sx*sx);

return r;

};

As a consequence, the expression y>x will design de regression of y-values

depending on x-values. Of course, x>y, represent the regression of x-values, depending on y-

values.

Extensions

It is possible to extend the operator > definition, as for example, by including Durbin

Watson test designed to verify the errors autocorrelation.

We remember that Durbin - Watson test is:

()∑

∑

n
2

i i-1
i=2

n
2
i

i=1

e -e
d =

e

 4

where

i ie = y -slope*xi-intercept

Consequently, we have to extend regress class, by including a new data member:
class regress{

public:

float slope;

float intercept;

float DW;

};

The new definition of the overloaded operator > will be:
regress operator > (TS y,TS x){

regress r;

float sx=0,sy=0,sx2=0,sxy=0;

for(int i=0;i<x.n;i++){

sx+=x.s[i];sy+=y.s[i];

sx2+=x.s[i]*x.s[i];sxy+=x.s[i]*y.s[i];

};

r.slope=(x.n*sxy-sx*sy)/(x.n*sx2-sx*sx);

r.intercept=(sx2*sy-sx*sxy)/(x.n*sx2-sx*sx);

float e[x.n];

for(int j=0;j<x.n;j++)

e[j]=y.s[j]-r.slope*x.s[j]-r.intercept;

float e1=0,e2=0;

for(int k=1;k<x.n;k++)e1+=(e[k]-e[k-1])*(e[k]-e[k-1]);

for(int p=0;p<x.n;p++)e2+=e[p]*e[p];

r.DW=e1/e2;

return r;

};

References

Stroustrup, B., 2000. The C++ Programming Language. Addison-Wesley

Pub Co; 3rd edition (February 15, 2000); ISBN 0-201-70073-5

 5

	Introduction
	Class Functions
	Operators
	Extensions
	References

